

TETRAHEDRON: ASYMMETRY

Tetrahedron: Asymmetry 14 (2003) 3949–3953

Stereoselective synthesis of 3-amino-4-substituted-2-azetidinones via [2+2] cycloadditions of tricarbonyl(η^6 arene)chromium(0)complexed imines

Paola Del Buttero, a,* Giorgio Moltenia and Antonio Papagnib

^aUniversità degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, Via Golgi 19, 20133 Milano, Italy ^bUniversità degli Studi di Milano-Bicocca, Dipartimento di Scienze dei Materiali, Via Cozzi 53, 20125 Milano, Italy Received 9 September 2003; accepted 17 September 2003

Abstract—The stereoselective [2+2] cycloaddition reaction between the chiral tricarbonyl(η^6 arene) chromium(0) complexed imines 1 and 6 and phthalimidoketene affords tricarbonyl (η^6 arene)chromium(0) complexed 3-phthalimido-2-azetidinones 3, 7 and 8, both in racemic and enantiopure form. Decomplexation and the cleavage of the phthalimido group give 3-amino-4-substituted-2-azetidinones 5 and 10. Some insights into the stereochemical outcome of the [2+2] cycloaddition process are discussed. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The 2-azetidinone ring represents the core of a large number of both natural and synthetic drugs employed in the treatment of different types of microbial infections. 1,2

In this field, 3-amino-2-azetidinones are regarded as versatile intermediates since, exploiting the reactivity of amino group, they are easily transformed in a huge variety of derivatives with potential antibiotic activity.³ Thus, different approaches have been developed in order to synthesise this nucleus in a stereo-, or better, enantioselective manner.⁴ The tricarbonylchromium η^6 complexes of dissymmetrically disubstituted arene derivatives have gained an increasing popularity as effective chiral auxiliaries in a large number of stereoselective synthesis of small heterocyclic systems.⁵ By exploiting them, we report herein on the first stereoselective [2+2] cycloaddition reaction between tricarbonyl(η^6 arene) chromium(0) complexed imines 1, 6 and phthalimidoketenes which allows us the preparation of new 3-amino-4-substituted-2-azetidinones in racemic and enantiopure form.

2. Results and discussion

 $tricarbonyl(\eta^6 arene) chromium(0)$ The complexed imines 1a,b, dissolved in dry dichloromethane, were treated at 0°C, with a threefold excess of phthalimidoacetylchloride 2⁶ and in the presence of freshly distilled triethylamine (Scheme 1). Thus, the in situ generated phthalimidoketene reacts with the imine function under the classical Staudinger cycloaddition conditions affording 3-phthalimido-4-[tricarbonyl(η^6 arene)chromium(0)]complexed - 2 - azetidinones 3a with 98% (R = OMe) and 3b 94% (R = F) isolated yields and as single diastereoisomers. The 3,4-cis arrangement of the newly-formed stereocenters were deduced on the grounds of spectroscopic data. In particular, the J_{cis} value of 5.4 Hz between the hydrogens in the 3- and 4-position of the 2-azetidinone ring is in perfect agreement with literature data for a cis geometry.⁷ The exposure of dichloromethane solutions of the cycloadducts 3a,b to air and sunlight oxidises the trichromiumcarbonyl moiety giving the 3-phtalimido-4aryl-2-azetidinones 4a,b in nearly quantitative yields. Among the various methods available for the cleavage of the phthalimido protecting group,8 we found the treatment of 4 with an equimolecular amount of hydrazine in methanol solution reliable. The 3-amino-4-aryl-2-azetidinones **5a** and **5b** were obtained in 67 and 65% yields, respectively. Starting from enantiopure (1S)-(+)-

^{*} Corresponding author. Fax: 0039-02-50314139; e-mail: paola.delbuttero@unimi.it

1, the enantiomeric excesses of the azetidinone derivatives 4a,b were found to be $\geq 95\%$, as determined by ¹H NMR in the presence of Eu(hfc)₃ [tris{heptahydroxymethylene-(+)-camphorato} fluoropropyl europium-(III)]. The (3S,4R) absolute configuration of the newly-formed stereocenters in the products 5a,b has been assigned by comparing their rotation sign with that of 3-amino-1,4-diphenyl-2-azetidinone of known absolute configuration,9 and agrees with the attack from the si-face of the imine function of 1. In addition, under the accepted stereochemical model¹⁰ of [2+2] cycloadditions between imines and ketenes, the zwitterionic intermediate A should be favoured¹¹ since unavoidable steric hindrance between the Cr(CO)₃ tripod and the phthalimido moiety are expected for the intermediate **B** (Fig. 1). Furthermore, the stereochemical outcome of the above [2+2] cycloaddition is in line with that previously reported by us¹² and concerning

the formation of (3S,4R)-3-acetoxy-4-aryl-2-azetidinones.

When the [2+2] cycloaddition was extended to racemic tricarbonyl-[N-(2-methoxy cinnamylidene)-4-methoxyaniline]chromium 6, a significant change of stereoselection was observed (Scheme 2). In fact, the cycloadducts 7 and 8 was obtained with 78% overall yield and as 22: 78 diastereoisomeric mixture. The two diastereoisomers were easily separated by column chromatography, and the synthetic route leading to the racemic 3-amino-4-10 cinnamylidene-2-azetidinones was completed through the sequential cleavage of both the tricarbonylchromium and the phthalimido pendants. Starting from enantiopure (1S)-(+)-6, the enantiomeric pure 7 and 8 have been obtained. In order to exclude any enantiomeric enrichment during any of the steps from the adduct 7 and 8, the complete sequence to final

Scheme 1.

$$\begin{array}{c} \text{N-PMP} \\ \\ \text{OR} \\ \\ \text{Cr(CO)_3} \\ \\ \text{S\vec{r}-attack} \\ \\ \text{1} \\ \\ \text{OR} \\ \\ \text{Cr(CO)_3} \\ \\ \text{OR} \\ \\ \text{O$$

Figure 1.

N-PMP

N-PMP

N-PMP

$$R_1$$
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_4

Scheme 2.

3-aminoazetidinones has been performed using a mixture 22:78 of the enantiopure cycloadducts 7 and 8 (i.e. d.e. 56%). As expected, product 9 was recovered with an e.e. of 56% thus confirming that no enantiomeric enrichment has occurred during the Cr(CO)₃ removal. The further cleavage of the phthalimido group on 9 affords (+)-10 $[\alpha]_D = +162$ (Scheme 2, in which the major stereoisomer is shown). Although surprisingly, the stereoselectivity pattern of the initial [2+2] cycloaddition is paralleled from that reported in the similar reaction between (1S)-(+)-**6** and acetoxyketene, which gave the (3R,4S)-3acetoxy-4-cinnamylidene-2-azetidinone as the major stereoisomer, as it was shown on the basis of CD curves. Therefore, it appears reasonable that the newly-formed stereocentres in the 2-azetidinones 3 and the major stereoisomer 8 are reversed. On these basis, in analogy with the literature value of (-)-(3S,4R)-1-benzyl-3-

amino-4-cinnamylidene-2-azetidinone, 9 we have assigned the (3R,4S) configurations also to the (+)-10 derivative.

The depicted results are consistent with the mechanism outlined in Figure 2. First, it is reasonable that the *s-cis* and the *s-trans* conformers of **6** are in equilibrium and as consequence of this, an attack onto the re-face of imine function in the *s-cis* conformer of **6** is possible. According to the above-mentioned stereochemical model, ¹⁰ this possibility produces the two concurrent zwitterionic intermediates **C** and **D**. As highlighted in Figure 2, the negative charged oxygen is closer to the electron-withdrawing Cr(CO)₃ tripod (chromium carbonyls in many instances show a Lewis acid behaviour) in the intermediate **D** than in **C**. Thus, a higher stabilising electrostatic interaction should be expected in **D** when compared to **C**. To substantiate the latter sen-

Figure 2.

tence, we optimised the ground state geometry of both s-trans- and s-cis-6 at the PM3¹³ semiempirical level. ¹⁴ Next, we estimated the distances between O⁻ and the Cr(CO)₃ fragments in both the intermediates C and D through the data provided by Cossio et al.¹⁵ These distances were 4.3 Å for C and 3.2 Å for D, and considering the fact that electrostatic interactions (or electrostatic energies) are inversely proportional to the distances between charges, the intermediate **D** should be slightly more stabilised over C. This extra stabilisation could account for the observed diastereoselectivities.

3. Conclusions

Enantiopure chromium(0) complexed benzylidene imines 1 allow the corresponding 3-amino 2-azetidinones 3a, b to be obtained in good yield and in 98% e.e. As expected, a decrease in the diastereoselectively was observed using enantiomerically pure chromium complexed cinnamylidene imines 6. From the described results it comes that combining the known stereochemical rules for the behaviour of [2+2] cycloadditions and chiral tricarbonylchromium arenes, the attack of the imine onto the phthalimidoketene take place exclusively from the Si-face of (+)-(1S)-1 and mainly from the Re-face for the (+)-(1S)-6. Therefore, on the basis of the absolute configuration of the starting imine it is possible to predict the absolute configuration of new stereocentres in the final products.

4. Experimental

Melting points were determined with a Büchi apparatus in open tubes and are uncorrected. IR spectra were recorded with a Perkin–Elmer 1725 X spectrophotometer. Mass spectra were determined with a VG-70EQ apparatus. ¹H NMR (300 MHz), ¹³C and ¹⁹F NMR (75 MHz) spectra were taken with a Bruker AC 300 or a Bruker AMX 300 instrument (in CDCl₃ solutions at room temperature). Chemical shifts are given as ppm from tetramethylsilane and *J* values are given in Hz. Optical rotations were recorded on a Perkin–Elmer 241 Polarimeter at the sodium D line.

4.1. [2+2] Cycloaddition between phthalimidoketene and tricarbonylchromium complexed imines 1a,b and 6. General procedure

A solution of 2 (0.80 g, 3.6 mmol) in dry dichloromethane (15 mL) was added dropwise to a solution of the appropriate tricarbonylchromium complexed imine 1a,b or 6 (0.6 mmol) and triethylamine (0.67 mL, 4.8 mmol) in dry dichloromethane (6 mL) at 0°C. The reaction mixture was then warmed at room temperature and monitored by TLC (diethyl ether). After about 1 h the mixture was quenched with brine, extracted with dichloromethane (2×20 mL).

When starting from 1a,b, evaporation of the solvent gave solid which was crystallised from ethanol giving 3a,b.

When starting from 6, evaporation of the solvent gave a residue which was chromatographed on a silica gel column with diethylether:ethyl acetate 9:1 giving 7 and 8

Compound **3a**: (0.33 g, 98%); mp 125°C (with decomposition); IR: (Nujol) 1975, 1890, 1765, 1730 (cm⁻¹); ¹H NMR δ 3.60 (s, 3H), 3.80 (s, 3H), 4.70 (d, J 6.5 Hz, 1H), 4.8 (t, J 6.2 Hz, 1H), 5.30 (t, J=6.5 Hz, 1H), 5.60 (d, J 5.6 Hz, 1H), 5.70 (d, J 6.2 Hz, 1H), 5.80 (d, J 5.6 Hz, 1H), 6.9 (AB system, 2H), 7.6 (AB system, 2H), 7.6–7.8 (m, 4H); MS: m/z 564 (M⁺). Anal. calcd for C₂₈H₂₀CrN₂O₈ C, 59.58; H, 3.57; N, 4.96. Found: C, 59.56; H, 3.58; N, 4.95.

Compound (3S,4R)-3a: $[\alpha]_D^{25} = -238.0$ (CHCl₃, c 0.068) [from enantiopure (1S)-(+)-1a].

Compound **3b**: (0.31 g, 94%); mp 198°C (with decomposition); IR: (Nujol) 1970 1905, 1865, 1760, 1725 (cm⁻¹); ¹H NMR δ 3.80 (s, 3H), 4.07 (dt, J 6.2, 2.0 Hz, 1H), 5.10 (t, J 5.7 Hz, 1H), 5.30 (dt, J 6.5, 2.8 Hz, 1H), 5.55–5.65 (m, 2H), 5.8 (d, J 5.5 Hz, 1H), 7.00 (AB system, 2H), 7.70 (AB system, 2H), 7.7–7.9 (m, 4H). ¹⁹F NMR δ –141.65; MS: m/z 552 (M⁺). Anal. calcd for C₂₇H₁₇CrN₂O₇F C, 58.70; H, 3.10; N, 5.07. Found: C, 58.68; H, 3.11; N, 5.07.

Compound (3*S*,4*R*)-**3b**: $[\alpha]_D^{25} = -25.5$ (CHCl₃, *c* 0.11) [from enantiopure (1*S*)-(+)-**1b**].

Compound 7: (60 mg, 17%); mp 175°C (from ethanol); IR: (Nujol) 1975, 1895, 1760, 1730 (cm $^{-1}$); $^{1}{\rm H}$ NMR (CDCl $_{3}$) δ 3.70 (s, 3H), 3.75 (s, 3H), 4.85 (t, J 6.3 Hz, 1H), 4.95 (dd, J 5.4, 8.6 Hz, 1H), 4.99 (d, J 6.3 Hz, 1H), 5.45 (t, J 6.3 Hz, 1H), 5.65 (d, J 6.3 Hz, 1H), 5.85 (d, J 5.4 Hz, 1H), 6.3 (dd, J 8.6, 16.1 Hz, 1H), 6.9 (d, J 16.1 Hz, 1H), 7.4–8 (m, 8H); MS: m/z 590 (M $^{+}$). Anal. calcd for $\rm C_{30}H_{22}CrN_{2}O_{8}$ C, 61.02; H, 3.76; N, 4.46. Found: C, 61.04; H, 3.77; N, 4.45.

Compound (3S,4R)-7: $[\alpha]_D^{25} = +337.9$ (CHCl₃, c 0.015) [from enantiopure (1S)-(+)-6].

Compound **8**: (0.22 g, 61%); mp 185°C (from ethanol). IR: (Nujol) 1970, 1890, 1770, 1730 (cm⁻¹); ¹H NMR δ 3.70 (s, 3H), 3.75 (s, 3H), 4.81 (t, J 6.8 Hz, 1H), 5.0 (dd, J 8.7, 5.5 Hz, 1H), 5.2 (d, J 6.8 Hz, 1H), 5.4 (t, J 6.4 Hz, 1H), 5.6 (d, J 6.4 Hz, 1H), 5.7 (d, J 5.6 Hz, 1H), 6.28 (dd, J 8.7, 16.1 Hz, 1H), 7.1 (d, J 16.1 Hz, 1H), 6.8–7.8 (m, 8H); MS: m/z 590 (M⁺). Anal. calcd for $C_{30}H_{22}CrN_2O_8$ (590.5) C, 61.02; H, 3.76; N, 4.46. Found: C, 61.06; H, 3.75; N, 4.46.

Compound (3R,4S)-8: $[\alpha]_D^{25} = +646.6$ (CHCl₃, c 0.025) [from enantiopure (1S)-(+)-6].

4.2. Decomplexation of 3a,b and 7+8

A solution of **3a,b**, or **7+8** (0.4 mmol) in dichloromethane (15 mL) was exposed to air and sunlight for 6 h. The solvent was removed under reduced pressure, the residue was taken up with diethylether

and filtered over a pad of Celite. The organic layer was evaporated under reduced pressure and the residue was crystallised by ethanol giving **4a,b** or **9**.

Compound **4a**: (0.16 g, 95%); mp 208°C (from ethanol); IR: (Nujol) 1800, 1760, 1720 (cm⁻¹); ¹H NMR δ 3.60 (s, 3H), 3.80 (s, 3H), 5.60 (d, J 5.44 Hz, 1H), 5.80 (d, J 5.44 Hz, 1H), 6.6–7.6 (m, 12H); MS: m/z 428 (M⁺). Anal. calcd for C₂₅H₂₀N₂O₅ C, 70.08; H, 4.71; N, 6.54. Found: C, 70.10; H, 4.70; N, 6.55.

Compound (3S,4R)-4a: $[\alpha]_D = -31.0$ (CHCl₃ c 0.025).

Compound **4b**: (0.17 g, 97%); mp 198°C (from ethanol); IR: (Nujol) 1785, 1758, 1727 (cm⁻¹); ¹H NMR δ 3.80 (s, 3H); 5.70 (d, J 5.5 Hz, 1H); 5.80 (d, J 5.5 Hz, 1H); 6.90 (AB system, 2H); 7.70 (m, 4H); MS: m/z 416 (M⁺). Anal. calcd for C₂₄H₁₇N₂O₄F C, 69.23; H, 4.12; N, 6.73. Found: C, 69.20; H, 4.11; N, 6.70.

Compound (3S,4R)-4b: $[\alpha]_D = -4.8$ (CHCl₃, c 0.25).

Compounds **9**: (0.18 g, 86%); IR: (Nujol) 1785, 1750, 1710 (cm⁻¹); ¹H NMR δ 3.78 (s, 1H), 3.80 (s, 3H), 5.10 (dd, J 5.5, 16.19 Hz, 1H), 5.68 (d, J 5.5 Hz, 1H), 5.68 (dd, J =8.9, 16.2 Hz, 1H); 7.10 (d, J 16.2 Hz, 1H); 6.8–7.7 (m, 12H); MS: m/z 454 (M⁺). Anal. calcd for $C_{27}H_{22}N_2O_5$ C, 71.35; H, 4.88; N, 6.16. Found: C, 71.33; H, 4.85; N, 6.74. e.e. \geq 98% by ¹H NMR (Eu(hfc)₃. $\lceil \alpha \rceil_{25}^{15} = +578.6$ (CHCl₃, c 0.02 CHCl₃)

4.3. Cleavage of the phthalimido group. General procedure

To a suspension of **4a,b** or **9** (0.6 mmol) and hydrazine dihydrochloride (0.83 g, 2.7 mmol) in dry methanol (8.0 mL), a solution of triethylamine (0.7 mL, 5.4 mmol) in dry methanol (1.0 mL) was added dropwise. The mixture was heated at 40°C for 4 h and then cooled, added with water (30 mL) and extracted with ethyl acetate. The solvent was evaporated and the residue was chromatographed on a silica gel column with dichloromethane: ethyl acetate 1:1 giving **5a,b** or **10**.

Compound **5a**: (0.12 g, 67%); mp 209°C (from dichloromethane/ethyl acetate 1:1); IR: (Nujol) 3400, 3350, 1740 (cm⁻¹); ¹H NMR δ 1.60 (br s, 2H), 3.70 (s, 3H), 3.85 (s, 3H), 4.60 (d, J 5.4 Hz, 1H), 5.50 (d, J = 5.4 Hz, 1H), 6.8-7.1 (m, 8H); MS: m/z 298 (M⁺). Anal. calcd for C₁₇H₁₈N₂O₃ C, 68.44; H, 6.08; N, 9.39. Found: C, 68.34; H, 6.07; N, 9.36.

Compound (3S,4R)-5a: $[\alpha]_D = -80.0$ (CHCl₃, c 0.10) [from (3S,4R)-4a].

Compound **5b**: (0.14 g, 81%); mp 120°C (from dichloromethane/ethyl acetate 1:1); IR: (Nujol) 3390, 3310, 1745 (cm⁻¹); ¹H NMR δ 1.60 (br s, 2H), 3.80 (s, 3H), 4.70 (d, J 5.4 Hz, 1H), 5.50 (d, J 5.4 Hz, 1H), 6.8–7.3 (m, 8H); MS: m/z 286 (M⁺). Anal. calcd for C₁₆H₁₅N₂O₂F C, 67.12; H, 5.28; N, 9.78. Found: C, 67.20; H, 5.26; N, 9.76.

Compound (3S,4R)-**5b**: $[\alpha]_D = -144.2$ (CHCl₃, c 0.57) [from (3S,4R)-**4b**].

Compounds **10**: (0.09 g, 45%); undistillable yellow oil; IR: (Nujol) 3385, 3315, 1750 (cm⁻¹); ¹H NMR δ 1.70 (s, 2H), 3.75 (s, 3H), 3.82 (s, 3H), 4.50 (dd, J 4.7, 5.5 Hz, 1H), 4.80 (dd, J 7.6, 5.5 Hz, 1H), 6.26 (dd, J 7.6, 16.1 Hz, 1H), 7.11 (d, J 16.1 Hz, 1H), 6.8–7.5 (m, 8H); MS: m/z 324 (M⁺). Anal. calcd for C₁₉H₂₀N₂O₃ C, 70.35; H, 6.21; N, 8.64. Found: C, 70.40; H, 6.20; N, 8.65.

Compound (3S,4R)-10: $[\alpha]_D = +162$ (CHCl₃, *c* 0.2 CHCl₃).

Acknowledgements

Thanks are due to MURST and CNR for financial support.

References

- Samarendra, C. I.; Maiti, N.; Micetich, R.; Daneshtalab, M.; Atchison, K.; Phillips, O. A.; Kunugita, C. J. Antibiot. 1994, 47, 1030.
- (a) Chemistry and Biology of β-Lactam Antibiotics Morris, R. B.; Gorman, M., Eds.; Academic Press: New York, 1982; (b) Niccolai, D.; Tarsi, L.; Thomas, R. J. Chem. Commun. 1997, 2333.
- 3. Sammes, P. G. Chem. Rev. 1976, 76, 113.
- 4. *The Organic Chemistry of β-Lactams*; Georg, G. I., Ed.; VCH Press: New York, 1993.
- 5. Davies, S. G.; McCarthy, T. D. In *Comprehensive Organometallic Chemistry II*; Abel, E. W.; Stone, F. G.; Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995; Vol. 12.
- Sheenan, J. C.; Ryan, J. J. J. Am. Chem. Soc. 1951, 73, 1204
- (a) Prasad, J. S.; Liebeskind, L. S. Tetrahedron Lett.
 1988, 29, 4253; (b) Palomo, C.; Arrieta, A.; Cossio, F. P.;
 Aizpurna, J. M.; Mielgo, A.; Aurrekoetxea, N. Tetrahedron Lett.
 1990, 31, 6429.
- 8. (a) Osby, J. O.; Martin, M. G.; Ganem, B. *Tetrahedron Lett.* **1984**, *25*, 2093; (b) Kambya, T.; Hashimoto, M.; Nakaguchi, O.; Oku, T. *Tetrahedron* **1978**, *35*, 323.
- 9. Ikota, N. Chem. Pharm. Bull. 1990, 38, 1601.
- 10. Hegedus, L. S.; Montgomery, J.; Narukawa, Y.; Snustad, D. C. *J. Am. Chem. Soc.* **1991**, *113*, 5784.
- 11. Solladiè-Cavallo, A. In *Advances in Metal-Organic Chemistry*; Liebeskind, L. S., Ed.; JAI Press: Greenwich, 1989; Vol. 1, p. 99.
- Baldoli, C.; Del Buttero, P.; Licandro, E.; Maiorana, S.; Papagni, A. Tetrahedron: Asymmetry 1994, 5, 809.
- 13. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209 and 221.
- 14. As implemented in the Hyper Chem Release 6.01 version for Windows; Hypercube Inc., 2000.
- Cossío, F. P.; Arrieta, A.; Lecea, B.; Ulgade, J. M. J. Am. Chem. Soc. 1994, 116, 2085.